
Chapter 2

Scalars and Variables
In this chapter, we will discuss arithmetic operations with scalars (numbers, really an array with
only one element) and variables. Scalars can be used directly in calculations and equations, or be
assigned to variables.

2.1 Arithmetic Operators with Scalars:

2.2 Order of Precedence

2.3 Examples:
The following examples demonstrate the order of operations

>> 7+5/2-6 %division is performed first followed by
 % addition and subtraction

ans = % if no variable is denoted, the result is
 % stored in “ans”

Operation Symbol MATLAB C++

Addition +

Subtraction -

Multiplication *

Right Division / 5 / 3 evaluates to 1.6667 5 / 3 evaluates to 1

Left Division \ 5 \ 3 = 3 / 5 evaluates to 0.6 NA

Exponentiation ^ 5 ^ 3 means 53 evaluates to 125 NA

Order MATLAB C++

First Parentheses. For nested parentheses, the
innermost are executed first.

same

Second Exponentiation - right to left NA

Third Multiplication, division in order left to
right

same

Fourth Addition and subtraction in order left to
right

same
9

 3.5000

>> (7+5)/2-6 %the evaluation order can be
 % modified by the use of ()

ans =

 0

>> (7+5)/(2-6)

ans =

 -3

>> 7^(1/3) + 32^0.3 % () are performed first
 % followed by exponentiation
 % followed by the addition
ans =

 4.7414

>>

2.4 Numerical Precision of MATLAB Output
All arithmetic is done to double precision. MATLAB automatically prints integer values as inte-
gers and floating point numbers to four decimal digits of accuracy. Exponential format is auto-
matically used when the value of a number falls outside the range of numbers that can be printed
using the default format.

However the default formatting can be altered by using the format command. Once the format
command is entered, all the output that follows is displayed in the specified format. Several of the
available formats are listed below.

Command Description Example

format Default Same as short >>format
>> 150/7

ans =

 21.4286
10

format short Scaled fixed-point format
with 4 decimals
0.001 <= number <= 1000

>>format short
>> 150/7

ans =

 21.4286

format long Scaled fixed-point with 14
decimals
0.001 <= number <= 100

>>format long
>> 150/7

ans =

 21.42857142857143

format short e exponential format with 4
decimal places

>> format short e
>> 150/7

ans =

 2.1429e+001

format long e exponential format with 14
decimal places

>> format long e
>> 150/7

ans =

 2.142857142857143e+001

format short g Best of fixed or floating
point format with 5 digits

>> format short g
>> 150/7

ans =

 21.429

format long g Best of fixed or floating
point format with 15 digits

>> format long g
>> 150/7

ans =

 21.4285714285714

format bank Fixed format for dollars
and cents
Two decimal places

>> format bank
>> 150/7

ans =

 21.43

Command Description Example
11

2.5 Identifiers
An identifier is a programmer-defined name that represents some element of your program, i.e., data,
function name, object name. Variable names are examples of identifiers. Please make them readable and
indicative of what the variables are used for. You may be tempted to declare variables with names like
Bob -- please restrain yourself. The rather nondescript name, Bob, gives no clue as to the variable’s pur-
pose. (But it may refer to yourself--ego issues??, father--good for you, but not here, person you are in
love with--nice, but.) It is better to use variable names that describe what it represents. This way of cod-
ing helps produce self-documenting programs, which means you get an understanding of what the pro-
gram is doing just by reading its code.

Here are the specific rules that must be followed with all identifiers:

format rat Approximation by ratio of
small integers

>> format rat
>> 10/30

ans =

 1/3

format compact Suppress extra line-feeds

format loose Puts the extra line-feeds back in

Identifiers

MATLAB C++

begin with a letter, followed by any combination
of letters, numbers, and the underscore charac-
ter. Only the first 63 characters are significant;
if more than 63 are used, the remaining charac-
ters will be ignored.

begin with a letter or underscore followed by
any combination of letters, numbers, and under-
score. No limit on the number of characters.

Case Sensitive
name, NAME, Name are all different

Case Sensitive
name, NAME, Name are all different

Cannot be a keyword Cannot be a keyword

Avoid using the names of built-in functions for a
variable, i.e., avoid using: cos, sin, pow, sqrt,
etc.. Once a function name is used to define a
variable, the function cannot be used

Avoid using the names of built-in functions for
a variable. Once a function name is used to
define a variable, the function cannot be used.

Command Description Example
12

2.6 Data Types: most common
Computer programs collect pieces of data from the real world and manipulate them in various
ways. There are many different types of data--character, strings, whole numbers (integers), frac-
tional numbers, boolean, etc. C++ offers many data types. However, in the very broadest sense,
there are only two: numeric and character.

2.7 Declarations:
In the early days of computing, language design was heavily influenced by the decision to use
compilation or interpretation as a mode of execution. For example, some compiled languages
require that programs must explicitly state the data-type of a variable at the time it is declared or
first used. On the other hand, some languages take advantage of the dynamic aspects of interpre-
tation to make such declarations unnecessary. In FORTRAN 77, variables starting with “I” -”N”
are an integer; all others were float, unless otherwise indicated. In many scripting languages,
data-type of a variable is determine by what is stored into it. Nowadays, the differences between
the two styles of execution have largely been dealt with by more sophisticated designs. Most so-
called interpreted languages use an intermediate representation.

MATLAB C++

Most
common

double
char

bool, char, short, int, unsigned int, long,
float, double

double scalars or arrays of 64-bit double-
precision floating-point numbers.
Can hold real, imaginary, or complex
values. The real and imaginary com-
ponents of each variable can be posi-
tive or negative numbers in the range
of 10-308 to 10308

Can hold real values. The variable can be
positive or negative in the range of 10-308
to 10308

char scalars or arrays of 16-bit values,
each representing a single character.
Used to hold character strings. Auto-
matically created whenever a single
character or a character string is
assigned to a variable name.

a single character
13

A long explanation to lead into: MATLAB does not require variable declarations; C++ does.

2.8 Predefined Variables
A number of frequently used variables are already defined within MATLAB.

MATLAB: C++:

No declaration needed. The variable is cre-
ated when a value is assigned to a variable.
The datatype is determined from the assign-
ment.
variable = numerical value
variable = computed expression

Must be declared
datatype variable;

x = 1.23
y = 3 * x - 12
str = 'This is a character string'

Note: Those are single quotes ‘...’
NOT double quotes as in C++

double x = 1.23;
string str = "This is a character
string";

Variable Represents

ans Variable that has the value of the last expression that was not assigned to a
specific variable. If the user does not assign the value of an expression to a
variable, MATLAB automatically stores the result in ans

pi The value of

eps The smallest difference between two numbers. Equals 2^(-52), which is
approximately 2.2204e-016

Inf and inf used for infinity

i Defined as sqrt(-1) which is: 0 + 1.0000i

j Same as i

NaN Stands for Not-a-Number. Used when MATLAB cannot determine a valid
numeric value. For example 0.0/0.0 and inf - inf

realmax largest positive floating point number

realmin smallest positive floating point number

Π

14

These variables can be redefined. The variables ans, pi, eps, inf, NaN, clock,
and date are usually NOT redefined. The other predefined variables i and j are sometimes
redefined (common in association with loops) when complex numbers are not involved in the
application.

2.9 Commands for Managing Variables
The following commands can be useful to eliminate variables from memory or to obtain informa-
tion about variables that have been used. These commands are usually used within the Command
Window.

clock Current date and time as date vector.
CLOCK returns a six element date vector containing the current time and
date in decimal form:
 CLOCK = [year month day hour minute seconds]
The first five elements are integers. The seconds element is accurate to sev-
eral digits beyond the decimal point.
FIX(CLOCK) rounds to integer display format.
>> fix(clock)
ans =
 2004 3 29 22 35 24

date Current date as date string.
S = DATE returns a string containing the date in dd-mmm-yyyy format.
>> s = DATE

s =

28-Mar-2004

Command What it Does

clear Removes all variables from memory

clear x y z Removes only variables x, y, and z from
memory

who Displays a list of the variables currently in
memory

whos Displays a list of the variables currently in
memory and their size together with
information about their bytes and class

Variable Represents
15

2.10 I/O
There are many ways to get data into variables. One way is to define them explicitly, by assigning in
values from computations, and by using data that are loaded into MATLAB from an external file. In
this section, we are concerned only with I/O of variables.

MATLAB has functions for the basic input of variables from the keyboard and for formatted output of
variables.

2.11 Interactive input
There are several command that can be used for interactive input: input, keyboard, menu,
and pause. These can be used within the Command Window, a script or function file for interac-
tive user input.

2.11.1 Input
The input command is one of the easiest, simplest, and useful for basic input.

2.11.1.1 NUMERIC INPUT

 numApplies = input('How many apples >> ')
gives the user the prompt in the text string and then waits for input from the keyboard. The input can
be any MATLAB expression, which is evaluated, using the variables in the current workspace, and
the result returned in R. If the user presses the return key without entering anything, input returns an
empty matrix.

MATLAB C++

numApples = input('How many apples >> ')

How many apples >> <CR>

>> numApples

numApplies =

 []

int numApples;
cout << “How many apples >> “;
cin >> numApples;

//if a <CR> is hit, the program
//waits forever for an integer

numApples = input('How many apples >> ')

How many apples >> 5

>> numApples

numApplies =

 5

int numApples;
cout << “How many apples >> “;
cin >> numApples;
16

> “;

ram
r

2.11.1.2 STRING INPUT

 name = input('What is your name: >> ','s')
gives the prompt in the text string and waits for character string input. The typed input is not eval-
uated; the characters are simply returned as a MATLAB string.

The text string for the prompt may contain one or more '\n'. The '\n' means skip to the
beginning of the next line. This allows the prompt string to span several lines. To output just a
'\' use '\\'.

2.11.2 Keyboard
The command keyboard inside a script or function file (M-file) returns control to the keyboard at
that point where it encounters the command. The execution of the function or script is NOT ter-
minated. The command window prompt changed ‘>>’ to ‘k>>’ to show the status. At this point,
you can check variables already computed, change their values, and issue any valid MATLAB
commands. Control is returned to the script or function by typing the word return and pressing
the return key <CR>.

This command is useful for debugging purposes. Sometimes, in long programs, you may want to
check intermediate results, plot them, see if the computation is behaving as expected, and then let
the execution continue if all is well with the world.

2.11.2.1 MENU

The command menu generates a menu of choices for user input.
CHOICE = MENU(HEADER, ITEM1, ITEM2, ...) displays the HEADER string fol-
lowed in sequence by the menu-item strings: ITEM1, ITEM2, ... ITEMn. Returns the
number of the selected menu-item as CHOICE, a scalar value. There is no limit to the number of
menu items.

 CHOICE = MENU(HEADER, ITEMLIST) where ITEMLIST is a string cell array is also
a valid syntax.

 On most graphics terminals MENU will display the menu-items as push buttons in a figure win-
dow, otherwise they will be given as a numbered list in the command window (see example,
below).

MATLAB C++

>> name = input('What is your name: >> ', 's')
What is your name: >> Mary Lou

name =

Mary Lou

string name;
cout << “What is your name: >
cin >> name;

//if a <CR> is hit, the prog
//waits forever for an intege
17

 Command window example:
 >> menuChoice = MENU('choose a color','red','blue','green')
 displays on the screen:

2.11.2.2 PAUSE

The command pause temporarily halts “pauses” the current process. It is used with or without an
optional argument:

pause suspends execution of the current script or function until the user “hits any key”
(I’m still trying to find that key labeled “any”--anybody find it yet?)

pause(n) suspends execution for n seconds

2.11.3 Output to Monitor
Data can be displayed on the monitor or written to files in a number of ways.

2.11.3.1 UNFORMATTED OUTPUT OF TEXT AND OF STRINGS: DISP

One command that is frequently used to generate output on the screen is the disp command. The
disp command is used to display text, or the value/elements of a variable without displaying the
name of the variable. The format is:
 disp(‘text as string’) or
 disp(name of the variable)
Every time the disp command is executed, the display it generates appears on a new line.

If you want to save data to a file, the disp command will not work. See fprintf.

gEarth = 9.81; %acceleration on Earth
disp('==')
disp('Earth:')

When the user chooses a value in response to the
prompt, it is returned (i.e., menuChoice = 2
implies that the user selected Blue).
18

disp(gEarth)

==
Earth:
 9.8100

C++ Equivalent
gEarth = 9.81;
cout << “==” << endl;
cout << “Earth: ” << endl;
cout << gEarth;

2.11.4 Formatted Output of Variables: fprintf
MATLAB uses the function fprinf for formatted output of messages and numbers. The general
syntax for this function is:

count = fprintf(fid,format,A,...)

count = fprintf(fid,format,A,...) formats the data in the real part of matrix A
(and in any additional matrix arguments) under control of the specified format string, and
writes it to the file associated with file identifier fid. fprintf returns a count of the number
of bytes written.

Argument fid is an integer file identifier obtained from fopen. (It may also be 1 for standard
output (the monitor) or 2 for standard error. See fopen for more information.) Omitting fid
causes output to appear on the monitor.

2.11.5 Format String
The format argument is a string containing C language conversion specifications. A conversion
specification controls the notation, alignment, significant digits, field width, and other aspects of
output format. The format string can contain escape characters to represent non-printing charac-
ters such as newline characters and tabs.
Conversion specifications begin with the % character and contain these optional and required ele-
ments:
• Flags (optional)
• Width and precision fields (optional)
• A subtype specifier (optional)
• Conversion character (required)
You specify these elements in the following order:
19

2.11.6 Flags
You can control the alignment of the output using any of these optional flags.

2.11.7 Field Width and Precision Specifications
You can control the width and precision of the output by including these options in the format
string.

Character Description Example
A minus sign (-) Left-justifies the converted argument in its field. %-5.2d

A plus sign (+) Always prints a sign character (+ or -). %+5.2d

Zero (0) Pad with zeros rather than spaces. %05.2d

Examples

MATLAB Code Outut

x = 5.1200

>> fprintf('example%-6.2frun',x) example5.12 run

>> fprintf('example%+6.2frun',x) example +5.12run

>> fprintf('example%06.2frun',x) example005.12run

Character Description Example
Field width A digit string specifying the minimum number of digits to be

printed.
%6f

Precision A digit string including a period (.) specifying the number of digits
to be printed to the right of the decimal point.

%6.2f

 Start of conversion specification % - 12.5e Conversion character

 Flags

 Field width Precision
20

2.11.8 Conversion Characters
Conversion characters specify the notation of the output.

Conversion characters %o, %u, %x, and %X support subtype specifiers. See Remarks (below) for
more information.

2.12 Examples

Specifier Description
%c Single character
%d Decimal notation (signed)
%e Exponential notation (using a lowercase e as in 3.1415e+00)
%E Exponential notation (using an uppercase E as in 3.1415E+00)
%f Fixed-point notation
%g The more compact of %e or %f, as defined in [2]. Insignificant zeros do not print.
%G Same as %g, but using an uppercase E
%i Decimal notation (signed)
%o Octal notation (unsigned)
%s String of characters
%u Decimal notation (unsigned)
%x Hexadecimal notation (using lowercase letters a-f)
%X Hexadecimal notation (using uppercase letters A-F)

MATLAB/C code Output

y = 25.123456
x = 123.450000

>> fprintf('example %6f',y) example 25.123456

>> fprintf('example %6.2f',y) example 25.12

>> fprintf('example %6.4f',y) example 25.1235

>> fprintf('example %e',x) example 1.234500e+002

>> fprintf('example %E',x) example 1.234500E+002

>> fprintf('example %g',x) example 123.45

>> fprintf('example %6.4g',x) example 123.5
21

2.12.1 Escape Characters
This table lists the escape character sequences you use to specify non-printing characters in a for-
mat specification.

x = 0:.1:1;
y = [x; exp(x)];
fid = fopen('exp.txt','w');
fprintf(fid,'%6.2f %12.8f\n’, y)
fclose(fid)

creates the text file: exp.txt
containing:
0.00 1.00000000
0.10 1.10517092
...
1.00 2.71828183

>> fprintf('A unit circle has circum-
ference %g.\nAnd area
%g',2*pi*1,pi*1*1)

A unit circle has circumference
6.28319.
And area 3.14159

Print a single quote
>> fprintf(1,'It''s Friday.\n')

It's Friday.

>> B = [8.8 7.7; 8800 7700]
>> fprintf(1,'X is %6.2f meters or
%8.3f mm\n', 9.9, 9900,B)

X is 9.90 meters or 9900.000 mm
X is 8.80 meters or 8800.000 mm
X is 7.70 meters or 7700.000 mm

Convert to HEX
>> a = [6 10 14 44];
>> fprintf('%9X\n',a + (a<0)*2^32)

 6
 A
 E
 2C

Description MATLAB C++
Backspace \b \b

Form feed \f \f

New line \n \n

Carriage return \r \r

Horizontal tab \t \t

Backslash \\ \\

Single quotation
mark

\''
(two single quotes)

\’

Percent character %% NA

alarm NA \a

Double quote NA \”

MATLAB/C code Output
22

2.13 Remarks
The fprintf function behaves like its ANSI C language namesake with these exceptions and
extensions.

If you use fprintf to convert a MATLAB double into an integer, and the double contains a value
that cannot be represented as an integer (for example, it contains a fraction), MATLAB
ignores the specified conversion and outputs the value in exponential format. To successfully
perform this conversion, use the fix, floor, ceil, or round functions to change the value in the dou-
ble into a value that can be represented as an integer before passing it to fprintf.

The following, non-standard subtype specifiers are supported for the conversion characters
%o, %u, %x, and %X.

For example, to print a double value in hexadecimal use the format '%bx'

The fprintf function is vectorized for nonscalar arguments. The function recycles the format
string through the elements of A (columnwise) until all the elements are used up. The function
then continues in a similar manner through any additional matrix arguments.

2.14 FILE I/O
As with many other programming languages, there are times when you don’t want to type all
those numbers from the keyboard or you want to use that output to feed into another program or
routine. This is when you need FILES.

b The underlying C data type is a double rather than an unsigned integer. For example, to
print a double-precision value in hexadecimal, use a format like '%bx'.

t The underlying C data type is a float rather than an unsigned integer.

Note fprintf displays negative zero (-0) differently on some platforms, as shown in the fol-
lowing table.

Conversion Character
Platform %e or %E %f %g or %G
PC 0.000000e+000 0.000000 0
SGI 0.000000e+00 0.000000 0
HP700 -0.000000e+00 -0.000000 0
Others -0.000000e+00 -0.000000 -0
23

2.14.1 File Input/Output

Command

% open an existing file
fid = fopen(filename, permission)

Permissions are:
'r' read
'w' write (create if necessary)
'a' append (create if necessary)
'r+' read and write (do not create)
'w+' truncate or create for read and write
'a+' read and append (create if necessary)
'W' write without automatic flushing
'A' append without automatic flushing

fid1 = fopen(“data.txt”) % open for reading
fid2 = fopen (“temp.txt”,’w’) % open for writing

% close an open file
fclose

state = fclose(fid) %fid is the id connected with the file
state = fclose(fid1) %closes “data.txt” from above example

% read binary data from a file
fread

If you wish further info, use “help fread”

%writes binary data to a file
fwrite

%read formatted data from a file
fscanf

S = fscanf(fid,'%s') reads (and returns) a character string.
A = fscanf(fid,'%5d') reads 5-digit decimal integers.

% writes formatted data to a file
fprintf

%read strings in specified format
sscanf

for further info, use “help sscanf”
24

2.15 References
[1] Kernighan, B.W. and D.M. Ritchie, The C Programming Language, Second Edition, Prentice-
Hall, Inc., 1988.
[2] ANSI specification X3.159-1989: "Programming Language C," ANSI, 1430 Broadway, New
York, NY 10018.

% writes data in formatted string
sprintf

% reads a line from file discarding newline character
fgets

% reads a line from file including newline character
fgetl

% rewinds a file
frewind

% sets the file position indicator
fseek

% gets the current file position indicator
ftell

% inquires file I/O error status
ferror

Command
25

	Chapter 2
	Scalars and Variables
	2.1 Arithmetic Operators with Scalars:
	2.2 Order of Precedence
	2.3 Examples:
	2.4 Numerical Precision of MATLAB Output
	2.5 Identifiers
	2.6 Data Types: most common
	2.7 Declarations:
	2.8 Predefined Variables
	2.9 Commands for Managing Variables
	2.10 I/O
	2.11 Interactive input
	2.12 Examples
	2.13 Remarks
	2.14 FILE I/O
	2.15 References

